Abstract— Many urban navigation applications (e.g., autonomous navigation, driver assistance systems) can benefit greatly from localization with centimeter accuracy. Yet such accuracy cannot be achieved reliably with GPS-based inertial guidance systems, specifically in urban settings. We propose a technique for high-accuracy localization of moving vehicles that utilizes maps of urban environments. Our approach integrates GPS, IMU, wheel odometry, and LIDAR data acquired by an instrumented vehicle, to generate high-resolution environment maps. Offline relaxation techniques similar to recent SLAM methods [2, 10, 13, 14, 21, 30] are employed to bring the map into alignment at intersections and other regions of self-overlap. By reducing the final map to the flat road surface, imprints of other vehicles are removed. The result is a 2-D surface image of ground reflectivity in the infrared spectrum with 5cm pixel resolution. To localize a moving vehicle relative to these maps, we pres...