Abstract--Smooth surface extraction using partial differential equations (PDEs) is a well-known and widely used technique for visualizing volume data. Existing approaches operate on gridded data and mainly on regular structured grids. When considering unstructured point-based volume data where sample points do not form regular patterns nor are they connected in any form, one would typically resample the data over a grid prior to applying the known PDE-based methods. We propose an approach that directly extracts smooth surfaces from unstructured point-based volume data without prior resampling or mesh generation. When operating on unstructured data one needs to quickly derive neighborhood information. The respective information is retrieved by partitioning the 3D domain into cells using a kd-tree and operating on its cells. We exploit neighborhood information to estimate gradients and mean curvature at every sample point using a four-dimensional least-squares fitting approach. Gradients...