Sciweavers

NIPS
2003

Link Prediction in Relational Data

14 years 26 days ago
Link Prediction in Relational Data
Many real-world domains are relational in nature, consisting of a set of objects related to each other in complex ways. This paper focuses on predicting the existence and the type of links between entities in such domains. We apply the relational Markov network framework of Taskar et al. to define a joint probabilistic model over the entire link graph — entity attributes and links. The application of the RMN algorithm to this task requires the definition of probabilistic patterns over subgraph structures. We apply this method to two new relational datasets, one involving university webpages, and the other a social network. We show that
Benjamin Taskar, Ming Fai Wong, Pieter Abbeel, Dap
Added 31 Oct 2010
Updated 31 Oct 2010
Type Conference
Year 2003
Where NIPS
Authors Benjamin Taskar, Ming Fai Wong, Pieter Abbeel, Daphne Koller
Comments (0)