Background: Genome wide association (GWA) studies are now being widely undertaken aiming to find the link between genetic variations and common diseases. Ideally, a well-powered GWA study will involve the measurement of hundreds of thousands of single nucleotide polymorphisms (SNPs) in thousands of individuals. The sheer volume of data generated by these experiments creates very high analytical demands. There are a number of important steps during the analysis of such data, many of which may present severe bottlenecks. The data need to be imported and reviewed to perform initial quality control (QC) before proceeding to association testing. Evaluation of results may involve further statistical analysis, such as permutation testing, or further QC of associated markers, for example, reviewing raw genotyping intensities. Finally significant associations need to be prioritised using functional and biological interpretation methods, browsing available biological annotation, pathway informa...
Fredrik Pettersson, Andrew P. Morris, Michael R. B