Background: Innumerable biological investigations require comparing collections of molecules, cells or organisms to one another with respect to one or more of their properties. Almost all of these comparisons are performed manually, which can be susceptible to inadvertent bias as well as miss subtle effects. The development and application of computer-assisted analytical and interpretive tools could help address these issues and thereby dramatically improve these investigations. Results: We have developed novel computer-assisted analytical and interpretive tools and applied them to recent studies examining the ability of 3-repeat and 4-repeat tau to regulate the dynamic behavior of microtubules in vitro. More specifically, we have developed an automated and objective method to define growth, shortening and attenuation events from real time videos of dynamic microtubules, and demonstrated its validity by comparing it to manually assessed data. Additionally, we have used the same data t...