In this paper, an expression for the asymptotic growth rate of the number of small linear-weight codewords of irregular doubly-generalized LDPC (D-GLDPC) codes is derived. The expression is compact and generalizes existing results for LDPC and generalized LDPC (GLDPC) codes. Assuming that there exist check and variable nodes with minimum distance 2, it is shown that the growth rate depends only on these nodes. An important connection between this new result and the stability condition of D-GLDPC codes over the BEC is highlighted. Such a connection, previously observed for LDPC and GLDPC codes, is now extended to the case of D-GLDPC codes.
Mark F. Flanagan, Enrico Paolini, Marco Chiani, Ma