The poset retraction problem for a poset P is whether a given poset Q containing P as a subposet admits a retraction onto P, that is, whether there is a homomorphism from Q onto P which fixes every element of P. We study this problem for finite series-parallel posets P. We present equivalent combinatorial, algebraic, and topological charaterisations of posets for which the problem is tractable, and, for such a poset P, we describe posets admitting a retraction onto P.
Víctor Dalmau, Andrei A. Krokhin, Benoit La