Sciweavers

AUTOMATICA
2006

Stabilization of sampled-data nonlinear systems via backstepping on their Euler approximate model

14 years 27 days ago
Stabilization of sampled-data nonlinear systems via backstepping on their Euler approximate model
Two integrator backstepping designs are presented for digitally controlled continuous-time plants in special form. The controller designs are based on the Euler approximate discrete-time model of the plant and the obtained control algorithms are novel. The two control laws yield, respectively, semiglobal-practical stabilization and global asymptotic stabilization of the Euler model. Both designs achieve semiglobal-practical stabilization (in the sampling period that is regarded as a design parameter) of the closed loop sampled-data system. A simulation example illustrates that the obtained controllers may sometimes be superior to backstepping controllers based on the continuous-time plant model that are implemented digitally. Key words: Disturbances, Networked Control Systems, Nonlinear, Stability.
Dragan Nesic, Andrew R. Teel
Added 10 Dec 2010
Updated 10 Dec 2010
Type Journal
Year 2006
Where AUTOMATICA
Authors Dragan Nesic, Andrew R. Teel
Comments (0)