This paper reports on the underlying IR problems encountered when dealing with the complex morphology and compound constructions found in the Hungarian language. It describes evaluations carried out on two general stemming strategies for this language, and also demonstrates that a light stemming approach could be quite effective. Based on searches done on the CLEF test collection, we find that a more aggressive suffix-stripping approach may produce better MAP. When compared to an IR scheme without stemming or one based on only a light stemmer, we find the differences to be statistically significant. When compared with probabilistic, vector-space and language models, we find that the Okapi model results in the best retrieval effectiveness. The resulting MAP is found to be about 35% better than the classical tf idf approach, particularly for very short requests. Finally, we demonstrate that applying an automatic decompounding procedure for both queries and documents significantly improve...