: We adapt a combinatorial optimization algorithm, extremal optimization (EO), for the search problem in computational protein design. This algorithm takes advantage of the knowledge of local energy information and systematically improves on the residues that have high local energies. Power-law probability distributions are used to select the backbone sites to be improved on and the rotamer choices to be changed to. We compare this method with simulated annealing (SA) and motivate and present an improved method, which we call reference energy extremal optimization (REEO). REEO uses reference energies to convert a problem with a structured local-energy profile to one with more random profile, and extremal optimization proves to be extremely efficient for the latter problem. We show in detail the large improvement we have achieved using REEO as compared to simulated annealing and discuss a number of other heuristics we have attempted to date.