Covering numbers of precompact symmetric convex subsets of Hilbert spaces are investigated. Lower bounds are derived for sets containing orthogonal subsets with norms of their elements converging to zero sufficiently slowly. When these sets are convex hulls of sets with power-type covering numbers, the bounds are tight. The arguments exploit properties of generalized Hadamard matrices. The results are illustrated by examples from machine learning, neurocomputing, and nonlinear approximation. © 2007 Elsevier B.V. All rights reserved.