Sciweavers

JMLR
2006

An Efficient Implementation of an Active Set Method for SVMs

13 years 11 months ago
An Efficient Implementation of an Active Set Method for SVMs
We propose an active set algorithm to solve the convex quadratic programming (QP) problem which is the core of the support vector machine (SVM) training. The underlying method is not new and is based on the extensive practice of the Simplex method and its variants for convex quadratic problems. However, its application to large-scale SVM problems is new. Until recently the traditional active set methods were considered impractical for large SVM problems. By adapting the methods to the special structure of SVM problems we were able to produce an efficient implementation. We conduct an extensive study of the behavior of our method and its variations on SVM problems. We present computational results comparing our method with Joachims' SVMlight (see Joachims, 1999). The results show that our method has overall better performance on many SVM problems. It seems to have a particularly strong advantage on more difficult problems. In addition this algorithm has better theoretical properti...
Katya Scheinberg
Added 13 Dec 2010
Updated 13 Dec 2010
Type Journal
Year 2006
Where JMLR
Authors Katya Scheinberg
Comments (0)