The problem of task assignment in heterogeneous computing systems has been studied for many years with many variations. We consider the version in which communicating tasks are to be assigned to heterogeneous processors with identical communication links to minimize the sum of the total execution and communication costs. Our contributions are three fold: a task clustering method which takes the execution times of the tasks into account; two metrics to determine the order in which tasks are assigned to the processors; a refinement heuristic which improves a given assignment. We use these three methods to obtain a family of task assignment algorithms including multilevel ones that apply clustering and refinement heuristics repeatedly. We have implemented eight existing algorithms to test the proposed methods. Our refinement algorithm improves the solutions of the existing algorithms by up to 15% and the proposed algorithms obtain better solutions than these refined solutions.