Sciweavers

PR
2008

Interest point detection using imbalance oriented selection

13 years 11 months ago
Interest point detection using imbalance oriented selection
Interest point detection has a wide range of applications, such as image retrieval and object recognition. Given an image, many previous interest point detectors first assign interest strength to each image point using a certain filtering technique, and then apply non-maximum suppression scheme to select a set of interest point candidates. However, we observe that non-maximum suppression tends to over-suppress good candidates for a weakly textured image such as a face image. We propose a new candidate selection scheme that chooses image points whose zero-/first-order intensities can be clustered into two imbalanced classes (in size), as candidates. Our tests of repeatability across image rotations and lighting conditions show the advantage of imbalance oriented selection. We further present a new face recognition application--facial identity representability evaluation--to show the value of imbalance oriented selection. 2007 Pattern Recognition Society. Published by Elsevier Ltd. All ...
Qi Li, Jieping Ye, Chandra Kambhamettu
Added 14 Dec 2010
Updated 14 Dec 2010
Type Journal
Year 2008
Where PR
Authors Qi Li, Jieping Ye, Chandra Kambhamettu
Comments (0)