Approximating general distributions by phase-type (PH) distributions is a popular technique in stochastic analysis, since the Markovian property of PH distributions often allows analytical tractability. This paper proposes an algorithm for mapping a general distribution, G, to a PH distribution, which matches the first three moments of G. Efficiency of our algorithm hinges on narrowing the search space to a particular subset of the PH distributions, which we refer to as Erlang