We establish exponential stability of nonlinear time-varying impulsive systems by employing Lyapunov functions with discontinuity at the impulse times. Our stability conditions have the property that when specialized to linear impulsive systems, the stability tests can be formulated as Linear Matrix Inequalities (LMIs). Then we consider LTI uncertain sampled-data systems in which there are two sources of uncertainty: the values of the process parameters can be unknown while satisfying a polytopic condition and the sampling intervals can be uncertain and variable. We model such systems as linear impulsive systems and we apply our theorem to the analysis and state-feedback stabilization. We find a positive constant which determines an upper bound on the sampling intervals for which the stability of the closed loop is guaranteed. The control design LMIs also provide controller gains that can be used to stabilize the process. We also consider sampled-data systems with constant sampling in...
Payam Naghshtabrizi, João P. Hespanha, Andr