Group elevator scheduling has long been recognized as an important problem for building transportation efficiency, since unsatisfactory elevator service is one of the major complaints of building tenants. It now has a new significance driven by homeland security concerns. The problem, however, is difficult because of complicated elevator dynamics, uncertain traffic in various patterns, and the combinatorial nature of discrete optimization. With the advent of technologies, one important trend is to use advance information collected from devices such as destination entry, radio frequency identification, and sensor networks to reduce uncertainties and improve efficiency. How to effectively utilize such information remains an open and challenging issue. This paper presents the optimized scheduling of a group of elevators with destination entry and future traffic information for normal operations and coordinated emergency evacuation. Key problem ristics are abstracted to establish a two-lev...
Peter B. Luh, Bo Xiong, Shi-Chung Chang