The links between identification and control are examined. The main trends in this research area are summarized, with particular focus on the design of low complexity controllers from a statistical perspective. It is argued that a guiding principle should be to model as well as possible before any model or controller simplifications are made as this ensures the best statistical accuracy. This does not necessarily mean that a full-order model always is necessary as well designed experiments allow for restricted complexity models to be near-optimal. Experiment design can therefore be seen as the key to successful applications. For this reason, particular attention is given to the interaction between experimental constraints and performance specifications. 2005 Elsevier Ltd. All rights reserved.