Low-level image analysis systems typically detect "points of interest", i.e., areas of natural images that contain corners or edges. Most of the robust and computationally efficient detectors proposed for this task use the autocorrelation matrix of the localized image derivatives. Although the performance of such detectors and their suitability for particular applications has been studied in relevant literature, their behavior under limited input source (image) precision or limited computational or energy resources is largely unknown. All existing frameworks assume that the input image is readily available for processing and that sufficient computational and energy resources exist for the completion of the result. Nevertheless, recent advances in incremental image sensors or compressed sensing, as well as the demand for low-complexity scene analysis in sensor networks now challenge these assumptions. In this paper, we investigate an approach to compute salient points of image...