Applications in computer networks often require high throughput access to large data structures for lookup and classification. While advanced algorithms exist to speed these search primitives on network processors and even custom application-specific integrated circuits (ASICs), achieving tight bounds on worst case performance with standard memories often requires a very careful analysis of all possible access patterns. An alternative, and often times more simple solution, is possible if a ternary CAM (TCAM) is used to perform a fully parallel search across the entire data set. Unfortunately, this parallelism means that large portions of the chip are switching during each cycle, causing large amounts of power to be consumed. While researchers at all levels of design (from algorithms to circuits) have begun to explore new ways of managing the power consumption, quantifying design alternatives is difficult due to a lack of available models. In this paper, we examine the structure of a mo...