The exponential growth of large-scale molecular sequence data and of the PubMed scientific literature has prompted active research in biological literature mining and information extraction to facilitate genome/proteome annotation and improve the quality of biological databases. Motivated by the promise of text mining methodologies, but at the same time, the lack of adequate curated data for training and benchmarking, the Protein Information Resource (PIR) has developed a resource for protein literature mining--iProLINK (integrated Protein Literature INformation and Knowledge). As PIR focuses its effort on the curation of the UniProt protein sequence database, the goal of iProLINK is to provide curated data sources that can be utilized for text mining research in the areas of bibliography mapping, annotation extraction, protein named entity recognition, and protein ontology development. The data sources for bibliography mapping and annotation extraction include mapped citations (PubMe...