Sciweavers

JIIS
2000

Knowledge Discovery from Series of Interval Events

13 years 11 months ago
Knowledge Discovery from Series of Interval Events
Knowledge discovery from data sets can be extensively automated by using data mining software tools. Techniques for mining series of interval events, however, have not been considered. Such time series are common in many applications. In this paper, we propose mining techniques to discover temporal containment relationships in such series. Speci cally, an item A is said to contain an item B if an event of type B occurs during the time span of an event of type A, and this is a frequent relationship in the data set. Mining such relationships provides insight about temporal relationships among various items. We implement the technique and analyze trace data collected from a real database application. Experimental results indicate that the proposed mining technique can discover interesting results. We also introduce a quantization technique as a preprocessing step to generalize the method to all time series.
Roy Villafane, Kien A. Hua, Duc A. Tran, Basab Mau
Added 19 Dec 2010
Updated 19 Dec 2010
Type Journal
Year 2000
Where JIIS
Authors Roy Villafane, Kien A. Hua, Duc A. Tran, Basab Maulik
Comments (0)