Related entity finding is the task of returning a ranked list of homepages of relevant entities of a specified type that need to engage in a given relationship with a given source entity. We propose a framework for addressing this task and perform a detailed analysis of four core components; co-occurrence models, type filtering, context modeling and homepage finding. Our initial focus is on recall. We analyze the performance of a model that only uses cooccurrence statistics. While it identifies a set of related entities, it fails to rank them effectively. Two types of error emerge: (1) entities of the wrong type pollute the ranking and (2) while somehow associated to the source entity, some retrieved entities do not engage in the right relation with it. To address (1), we add type filtering based on category information available in Wikipedia. To correct for (2), we add contextual information, represented as language models derived from documents in which source and target entit...