— For many applications, the control of a complex nonlinear system can be made easier by modeling the system as a collection of simplified hybrid modes, each representing a particular operating regime. An example of this is the decomposition of complex aerobatic flights into sequences of discrete maneuvers, an approach that has proven very successful for both human piloted and autonomously controlled aircraft. However, a critical step when designing such control systems is to ensure the safety and feasibility of transitions between these maneuvers. This work presents a hybrid dynamics framework for the design of guaranteed safe switching regions and is applied to a quadrotor helicopter performing an autonomous backflip. The regions are constructed using reachable sets calculated via a Hamilton-Jacobi differential game formulation, and experimental results are presented from flight tests on the STARMAC quadrotor platform.
Jeremy H. Gillula, Haomiao Huang, Michael P. Vitus