Abstract— Precise calibration of camera intrinsic and extrinsic parameters, while often useful, is difficult to obtain during field operation and presents scaling issues for multi-robot systems. We demonstrate a vision-based approach to navigation that does not depend on traditional camera calibration, and present an algorithm for guiding a robot through a previously traversed environment using a set of uncalibrated cameras mounted on the robot. On the first excursion through an environment, the system builds a topological representation of the robot’s exploration path, encoded as a place graph. On subsequent navigation missions, the method localizes the robot within the graph and provides robust guidance to a specified destination. We combine this method with reactive collision avoidance to obtain a system able to navigate the robot safely and reliably through the environment. We validate our approach with ground-truth experiments and demonstrate the method on a small ground r...
Olivier Koch, Matthew R. Walter, Albert S. Huang,