Sciweavers

IJDMMM
2010

Graphical models based hierarchical probabilistic community discovery in large-scale social networks

13 years 10 months ago
Graphical models based hierarchical probabilistic community discovery in large-scale social networks
: Real-world social networks, while disparate in nature, often comprise of a set of loose clusters (a.k.a. communities), in which members are better connected to each other than to the rest of the network. In addition, such communities are often hierarchical, reflecting the fact that some communities are composed of a few smaller, sub-communities. Discovering the complicated hierarchical community structure can gain us deeper understanding about the networks and the pertaining communities. This paper describes a hierarchical Bayesian model based scheme namely hierarchical social network-pachinko allocation model (HSN-PAM), for discovering probabilistic, hierarchical communities in social networks. This scheme is powered by a previously developed hierarchical Bayesian model. In this scheme, communities are classified into two categories: super-communities and regular-communities. Two different network encoding approaches are explored to evaluate this scheme on research collaborative net...
Haizheng Zhang, Ke Ke, Wei Li, Xuerui Wang
Added 27 Jan 2011
Updated 27 Jan 2011
Type Journal
Year 2010
Where IJDMMM
Authors Haizheng Zhang, Ke Ke, Wei Li, Xuerui Wang
Comments (0)