As the number of cores and threads in manycore compute accelerators such as Graphics Processing Units (GPU) increases, so does the importance of on-chip interconnection network design. This paper explores throughput-effective network-on-chips (NoC) for future manycore accelerators that employ bulk-synchronous parallel (BSP) programming models such as CUDA and OpenCL. A hardware optimization is "throughput-effective" if it improves parallel application level performance per unit chip area. We evaluate performance of future looking workloads using detailed closed-loop simulations modeling compute nodes, NoC and the DRAM memory system. We start from a mesh design with bisection bandwidth balanced with off-chip demand. Accelerator workloads tend to demand high off-chip memory bandwidth which results in a manyto-few traffic pattern when coupled with expected technology constraints of slow growth in pins-per-chip. Leveraging these observations we reduce NoC area by proposing a &quo...
Ali Bakhoda, John Kim, Tor M. Aamodt