Abstract-- This paper presents a framework for generating time-optimal velocity profiles for a group of pathconstrained vehicle robots that have fixed and known initial and goal locations and are required to maintain communication connectivity. Each robot must follow a fixed and known path, arrive at its goal as quickly as possible (or at least not increase the time for the last robot to arrive at its goal) and stay in communication with other robots in the arena throughout its journey. The main contribution of this paper is the formulation of the problem as a discrete time nonlinear programming problem (NLP) with constraints on robot kinematics, dynamics, collision avoidance, and communication connectivity. We develop Partition Elimination constraints that assist in ensuring that the communication network is fully connected (no network partitions). These constraints are enforced only when network partitions would otherwise occur, an approach which significantly reduces the problem siz...
Pramod Abichandani, Hande Y. Benson, Moshe Kam