Sciweavers

CDC
2010
IEEE

Convergence and convergence rate of stochastic gradient search in the case of multiple and non-isolated extrema

13 years 7 months ago
Convergence and convergence rate of stochastic gradient search in the case of multiple and non-isolated extrema
The asymptotic behavior of stochastic gradient algorithms is studied. Relying on some results of differential geometry (Lojasiewicz gradient inequality), the almost sure pointconvergence is demonstrated and relatively tight almost sure bounds on the convergence rate are derived. In sharp contrast to all existing result of this kind, the asymptotic results obtained here do not require the objective function (associated with the stochastic gradient search) to have an isolated minimum at which the Hessian of the objective function is strictly positive definite. Using the obtained results, the asymptotic behavior of recursive prediction error identification methods is analyzed. The convergence and convergence rate of supervised learning algorithms are also studied relying on these results. Key words. Stochastic gradient search, point-convergence, convergence rate, Lojasiewicz gradient inequality, system identification, recursive prediction error, ARMA models, machine learning, supervised l...
Vladislav B. Tadic
Added 13 May 2011
Updated 13 May 2011
Type Journal
Year 2010
Where CDC
Authors Vladislav B. Tadic
Comments (0)