This paper investigates the issue of dynamic resource allocation (DRA) in the context of multiuser cognitive radio networks. We present a general framework adopting generalized signal expansion functions for representation of physical-layer radio resources as well as for synthesis of transmitter and receiver waveforms, which allow us to join DRA with waveform adaptation, two procedures that are currently carried out separately. Based on the signal expansion framework, we develop noncooperative games for distributed DRA, which seek to improve the spectrum utilization on a per-user basis under both transmit power and cognitive spectral mask constraints. The proposed DRA games can handle many radio platforms such as frequency, time or code division multiplexing (FDM, TDM, CDM), and even agile platforms with combinations of different types of expansion functions. To avoid the complications of having too many active expansion functions after optimization, we also propose to combine DRA wit...