Abstract. We study continuous dynamical systems defined by autonomous ordinary differential equations, themselves given by parametric rational functions. For such systems, we provide semi-algebraic descriptions of their hyperbolic and non-hyperbolic equilibria, their asymptotically stable hyperbolic equilibria, their Hopf bifurcations. To this end, we revisit various criteria on sign conditions for the roots of a real parametric univariate polynomial. In addition, we introduce the notion of comprehensive triangular decomposition of a semi-algebraic system and demonstrate that it is well adapted for our study.