Due to the breakdown of Dennardian scaling, the percentage of a silicon chip that can switch at full frequency is dropping exponentially with each process generation. This utilization wall forces designers to ensure that, at any point in time, large fractions of their chips are effectively dark or dim silicon, i.e., either idle or significantly underclocked. As exponentially larger fractions of a chip’s transistors become dark, silicon area becomes an exponentially cheaper resource relative to power and energy consumption. This shift is driving a new class of architectural techniques that “spend” area to “buy” energy efficiency. All of these techniques seek to introduce new forms of heterogeneity into the computational stack. We envision that ultimately we will see widespread use of specialized architectures that leverage these techniques in order to attain orders-of-magnitude improvements in energy efficiency. However, many of these approaches also suffer from massive in...
Michael B. Taylor