With the continuing growth in the amount of genetic data, members of the bioinformatics community are developing a variety of data-mining applications to understand the data and discover meaningful information. These applications are important in defining the design and performance decisions of future high performance microprocessors. This paper presents a detailed data-sharing analysis and chip-multiprocessor (CMP) cache study of several multithreaded data-mining bioinformatics workloads. For a CMP with a three-level cache hierarchy, we model the last-level of the cache hierarchy as either multiple private caches or a single cache shared amongst different cores of the CMP. Our experiments show that the bioinformatics workloads exhibit significant data-sharing--50?95% of the data cache is shared by the different threads of the workload. Furthermore, regardless of the amount of data cache shared, for some workloads, as many as 98% of the accesses to the last-level cache are to shared d...
Aamer Jaleel, Matthew Mattina, Bruce L. Jacob