Abstract. Protein-protein interactions play a major role in most cellular processes. Thus, the challenge of identifying the full repertoire of interacting proteins in the cell is of great importance, and has been addressed both experimentally and computationally. Today, large scale experimental studies of interacting proteins, while partial and noisy, allow us to characterize properties of interacting proteins and develop predictive algorithms. Most existing algorithms, however, ignore possible dependencies between interacting pairs, and predict them independently of one another. In this study, we present a computational approach that overcomes this drawback by predicting protein-protein interactions simultaneously. In addition, our approach allows us to integrate various protein attributes and explicitly account for uncertainty of assay measurements. Using the language of relational Markov Random Fields, we build a unified probabilistic model that includes all of these elements. We sh...