As RFID tags are increasingly attached to everyday items, it quickly becomes impractical to collect data from every tag in order to extract useful information. In this paper, we consider the problem of identifying popular categories of RFID tags out of a large collection of tags, without reading all the tag data. We propose two algorithms based on the idea of group testing, which allows us to efficiently derive popular categories of tags. We evaluate our solutions using both theoretical analysis and simulation. Categories and Subject Descriptors: C.2.1 [Network Architecture and Design]: Wireless Communication General Terms: Algorithms, Design, Measurement, Performance, Theory