Abstract—Multiprocessor architectures are becoming popular in both desktop and mobile processors. Among multiprocessor architectures, asymmetric architectures show promise in saving energy and power. However, the performance and energy consumption behavior of asymmetric multiprocessors with desktop-oriented multithreaded applications has not been studied widely. In this study, we measure performance and power consumption in asymmetric and symmetric multiprocessors using real 8 and 16 processor systems to understand the relationships between thread interactions and performance/power behavior. We find that when the workload is asymmetric, using an asymmetric multiprocessor can save energy, but for most of the symmetric workloads, using a symmetric multiprocessor (with the highest clock frequency) consumes less energy.
Nagesh B. Lakshminarayana, Hyesoon Kim