This paper presents a random finite set theoretic formulation for multi-object tracking as perceived by a 3D-LIDAR in a dynamic environment. It is mainly concerned with the joint detection and estimation of the unknown and time varying number of objects present in the environment and the dynamic state of these objects, given a set of measurements. This problem is particularly challenging in cluttered dynamic environments such as in urban settings or marine environments, because, given a measurement set, there is absolutely no knowledge of which object generated which measurement, and the detected measurements are indistinguishable from false alarms. The proposed approach to multi-object tracking is based on the rigorous theory of finite set statistics (FISST). The optimal Bayesian multi-object tracking is not yet practical due to its computational complexity. However, a practical alternative to the optimal filter is the probability hypothesis density (PHD) filter, that propagates ...
Kwang Wee Lee, Bharath Kalyan, W. Sardha Wijesoma,