Sciweavers

SAC
2009
ACM

Parameterless outlier detection in data streams

14 years 7 months ago
Parameterless outlier detection in data streams
Outlyingness is a subjective concept relying on the isolation level of a (set of) record(s). Clustering-based outlier detection is a field that aims to cluster data and to detect outliers depending on their characteristics (small, tight and/or dense clusters might be considered as outliers). Existing methods require a parameter standing for the “level of outlyingness”, such as the maximum size or a percentage of small clusters, in order to build the set of outliers. Unfortunately, manually setting this parameter in a streaming environment should not be possible, given the fast time response usually needed. In this paper we propose WOD, a method that separates outliers from clusters thanks to a natural and effective principle. The main advantages of WOD are its ability to automatically adjust to any clustering result and to be parameterless. Categories and Subject Descriptors H.4 [Information Systems Applications]: Miscellaneous Keywords Data Streams, Outliers, Parameterless
Alice Marascu, Florent Masseglia
Added 19 May 2010
Updated 19 May 2010
Type Conference
Year 2009
Where SAC
Authors Alice Marascu, Florent Masseglia
Comments (0)