Developing streaming applications on heterogenous multi-processor architectures like the Cell is difficult. Currently, application developers need to know about hardware details to deal with issues like scheduling, memory management and communication/synchronization. Worse, with multiple alternatives for communication available, developers spend significant time picking the most appropriate one. A poor choice often results in bad performance. With CellSpace, we shield users from hardware details without compromising performance. Its runtime is based on an evaluation of the different communication primitives. In Cell-Space, developers specify a streaming application as a data flow graph of interacting components. Both task- and data-parallelism are easily expressed and advanced features such as dynamic reconfiguration are fully supported. Beneath a simple interface we include a slew of optimizations not present in other Cell run time environments. We demonstrate the impact of these ...
Maik Nijhuis, Herbert Bos, Henri E. Bal, Cé