We present the current results of our ongoing research in achieving efficient control of a flying robot for a wide variety of possible applications. A lightweight small indoor helicopter has been equipped with an embedded system and relatively simple sensors to achieve autonomous stable flight. The controllers have been tuned using genetic algorithms to further enhance flight stability. A number of additional sensors would need to be attached to the helicopter to enable it to sense more of its environment such as its current location or the location of obstacles like the walls of the room it is flying in. The lightweight nature of the helicopter very much restricts the amount of sensors that can be attached to it. We propose utilising the intrinsic sound signatures of the helicopter to locate it and to extract features about its current state, using another supervising robot. The analysis of this information is then sent back to the helicopter using an uplink to enable the helico...
Benjamin N. Passow, Sophy Smith, Mario A. Gó