Polynomial time preprocessing to reduce instance size is one of the most commonly deployed heuristics to tackle computationally hard problems. In a parameterized problem, every instance I comes with a positive integer k. The problem is said to admit a polynomial kernel if, in polynomial time, we can reduce the size of the instance I to a polynomial in k, while preserving the answer. In this paper, we show that all problems expressible in Counting Monadic Second Order Logic and satisfying a compactness property admit a polynomial kernel on graphs of bounded genus. Our second result is that all problems that have finite integer index and satisfy a weaker compactness condition admit a linear kernel on graphs of bounded genus. The study of kernels on planar graphs was initiated by a seminal paper of Alber, Fellows, and Niedermeier [J. ACM, 2004 ] who showed that Planar Dominating Set admits a linear kernel. Following this result, a multitude of problems have been shown to admit linear ke...
Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshta