We propose a novel method for computing a fourdimensional (4D) representation of the spatio-temporal visual hull of a dynamic scene, based on an extension of a recent provably correct Delaunay meshing algorithm. By considering time as an additional dimension, our approach exploits seamlessly the time coherence between different frames to produce a compact and high-quality 4D mesh representation of the visual hull. The 3D visual hull at a given time instant is easily obtained by intersecting this 4D mesh with a temporal plane, thus enabling interpolation of objects' shape between consecutive frames. In addition, our approach offers easy and extensive control over the size and quality of the output mesh as well as over its associated reprojection error. Our numerical experiments demonstrate the effectiveness and flexibility of our approach for generating compact, high-quality, time-coherent visual hull representations from real silhouette image data.