Sciweavers

GECCO
2009
Springer

Modeling UCS as a mixture of experts

14 years 7 months ago
Modeling UCS as a mixture of experts
We present a probabilistic formulation of UCS (a sUpervised Classifier System). UCS is shown to be a special case of mixture of experts where the experts are learned independently and later combined during prediction. In this work, we develop the links between the constituent components of UCS and a mixture of experts, thus lending UCS a strong analytical background. We find during our analysis that mixture of experts is a more generic formulation of UCS and possesses more generalization capability and flexibility than UCS, which is also verified using empirical evaluations. This is the first time that a simple probabilistic model has been proposed for UCS and we believe that this work will form a useful tool to analyse Learning Classifier Systems and gain useful insights into their working. Categories and Subject Descriptors G3 [Mathematics of Computing]: Probability and Statistics General Terms Algorithm Keywords Learning Classifier System, probabilistic modeling, mixture of ...
Narayanan Unny Edakunni, Tim Kovacs, Gavin Brown,
Added 26 May 2010
Updated 26 May 2010
Type Conference
Year 2009
Where GECCO
Authors Narayanan Unny Edakunni, Tim Kovacs, Gavin Brown, James A. R. Marshall
Comments (0)