Embedded systems are often operating under hard real-time constraints. Such systems are naturally described as time-bound reactions to external events, a point of view made manifest in the high-level programming and systems modeling language Timber. In this paper we demonstrate how the Timber semantics for parallel reactive objects translates to embedded real-time programming in C. This is accomplished through the use of a minimalistic Timber Run-Time system, TinyTimber (TT). The TT kernel ensures state integrity, and performs scheduling of events based on given time-bounds in compliance with the Timber semantics. In this way, we avoid the volatile task of explicitly coding parallelism in terms of processes/threads/semaphores/monitors, and side-step the delicate task to encode time-bounds into priorities. In this paper, the TT kernel design is presented and performance metrics are presented for a number of representative embedded platforms, ranging from small 8-bit to more potent 32bi...