In situations where Bayesian networks (BN) inferencing approximation is allowable, we show how to reduce the amount of sensory observations necessary and in a multi-agent context the amount of agent communication. To achieve this, we introduce Pseudo-Independence, a relaxed independence relation that quantitatively differentiates the various degrees of independence among nodes in a BN. We combine Pseudo-Independence with Context-Specific Independence to obtain a measure, Context-Specific PseudoIndependence (CSPI), that determines the amount of required data that needs to be used to infer within the error bound. We then use a Conditional Probability Table-based generation search process that utilize CSPI to determine the minimal observation set. We present empirical results to demonstrate that bounded approximate inference can be made with fewer observations.
Yoonheui Kim, Victor R. Lesser