Wireless sensor networks (WSNs) deployed for missioncritical applications face the fundamental challenge of meeting stringent spatiotemporal performance requirements using nodes with limited sensing capacity. Although advance network planning and dense node deployment may initially achieve the required performance, they often fail to adapt to the unpredictability of physical reality. This paper explores efficient use of mobile sensors to address the limitations of static WSNs in target detection. We propose a data fusion model that enables static and mobile sensors to effectively collaborate in target detection. An optimal sensor movement scheduling algorithm is developed to minimize the total moving distance of sensors while achieving a set of spatiotemporal performance requirements including high detection probability, low system false alarm rate and bounded detection delay. The effectiveness of our approach is validated by extensive simulations based on real data traces collected ...