— The paper describes a navigation algorithm for dynamic, uncertain environment. Moving obstacles are supposed to move on typical patterns which are pre-learned and are represented by Gaussian processes. The planning algorithm is based on an extension of the Rapidly-exploring Random Tree algorithm, where the likelihood of the obstacles trajectory and the probability of collision is explicitly taken into account. The algorithm is used in a partial motion planner, and the probability of collision is updated in real-time according to the most recent estimation. Results show the performance of the navigation algorithm for a car-like robot moving among dynamic obstacles with probabilistic trajectory prediction.