—This paper proposes a method for near-optimal navigation of high speed mobile robots on uneven terrain. The method relies on a layered control strategy. A high-level planning layer generates an optimal desired trajectory through uneven terrain. A low-level navigation layer guides a robot along the desired trajectory via a potential field-based control algorithm. The high-level planner is guaranteed to yield optimal trajectories but is computationally intensive. The low-level navigation layer is sub-optimal but computationally efficient. To guard against failures at the navigation layer, a model-based lookahead approach is employed that utilizes a reduced form of the optimal trajectory generation algorithm. Simulation results show that the proposed method can successfully navigate a mobile robot over uneven terrain while avoiding hazards. A comparison of the method’s performance to a similar algorithm is also presented.