Sciweavers

ISMAR
2008
IEEE

Pose tracking from natural features on mobile phones

14 years 5 months ago
Pose tracking from natural features on mobile phones
In this paper we present two techniques for natural feature tracking in real-time on mobile phones. We achieve interactive frame rates of up to 20Hz for natural feature tracking from textured planar targets on current-generation phones. We use an approach based on heavily modified state-of-the-art feature descriptors, namely SIFT and Ferns. While SIFT is known to be a strong, but computationally expensive feature descriptor, Ferns classification is fast, but requires large amounts of memory. This renders both original designs unsuitable for mobile phones. We give detailed descriptions on how we modified both approaches to make them suitable for mobile phones. We present evaluations on robustness and performance on various devices and finally discuss their appropriateness for Augmented Reality applications.
Daniel Wagner, Gerhard Reitmayr, Alessandro Mullon
Added 31 May 2010
Updated 31 May 2010
Type Conference
Year 2008
Where ISMAR
Authors Daniel Wagner, Gerhard Reitmayr, Alessandro Mulloni, Tom Drummond, Dieter Schmalstieg
Comments (0)