A new vision and inertial pose estimation system was implemented for real-time handheld augmented reality (AR). A sparse set of 3D cone fiducials are utilized for scalable indoor/outdoor tracking, as opposed to traditional planar patterns. The cones are easy to segment and have a large working volume which makes them more suitable for many applications. The pose estimation system receives measurements from the camera and IMU at 30 Hz and 100 Hz respectively. With a dual-core workstation, all measurements can be processed in real-time to update the pose of virtual graphics within the AR display.
John Martin Steinbis, William A. Hoff, Tyrone L. V